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Abstract. In the “metal liner” approach to Magnetized Target Fusion (MTF), a preheated magnetized plasma 
target is compressed to thermonuclear temperature and high density by externally driving the implosion of a flux 
conserving metal enclosure, or liner, which contains the plasma target. As in inertial confinement fusion, the 
principle fusion fuel heating mechanism is pdV work by the imploding enclosure, called a pusher in ICF. One 
possible MTF target, the hard-core diffuse z pinch, has been studied in MAGO experiments at VNIIEF, and is 
one possible target being considered for experiments on the Atlas pulsed power facility. Numerical MHD 
simulations show two intriguing and helpful features of the diffuse z pinch with respect to compressional 
heating. First, in two-dimensional simulations the m=0 interchange modes, arising from an unstable pressure 
profile, result in turbulent motions and self-organization into a stable pressure profile. The turbulence also gives 
rise to convective thermal transport, but the level of turbulence saturates at a finite level, and simulations show 
substantial heating during liner compression despite the turbulence. The second helpful feature is that pressure 
profile evolution during compression tends towards improved stability rather than instability when analyzed 
according to the Kadomtsev criteria. A liner experiment is planned for Atlas to study compression of magnetic 
flux without plasma as a first step. The Atlas geometry is compatible with a diffuse z pinch, and simulations of 
possible future experiments show that keV temperatures and useful neutron production for diagnostic purposes 
should be possible if a suitable plasma injector is added to the Atlas facility. 
  



1. Magnetized Target Fusion with a hard-core diffuse z pinch  

A plasma target under consideration for application to 
Magnetized Target Fusion (MTF) (see e.g., [1,2,3] and 
references therein) is the hard-core diffuse z pinch. 
The magnetic topology of the configuration is shown 
in Fig. 1. This configuration occurs in various types of 
coaxial accelerators such as the MAGO experiments 
[4,5], or in an inverse pinch geometry [6,7]. In recent 
simulations [1], the intriguing feature by which a 
diffuse z pinch self-organizes into a stable pressure 
profile appears to be a robust process, which is 
consistent with MAGO experimental results [4]. This 
paper discusses how the hard core z pinch responds to 
ideal adiabatic compression, and through numerical 
modeling what might be expected under more realistic 
circumstances with heat losses. The results show that 
thermonuclear temperatures should be achievable by 
means of plasma compression using liner technology 
such as that being developed for Explosive Magnetic 
Generators [8] and the new Atlas pulsed power facility 
[9]. As an example, parameters are selected for 
modeling that correspond to a low-cost experiment that might be done on the Atlas facility.  
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FIG. 1.  Magnetic field in the hard-
core stabilized diffuse z pinch. 

 
2. Formation, equilibrium, and self-organized stability  

As reported at the last IAEA meeting [2], simulations of target plasma formation in an 
inverse pinch show m = 0 instabilities. During the dynamics of formation, plasma 
acceleration in the radial direction causes Rayleigh-Taylor and Richtmeyer-Meshkov 
instabilities [7]. As plasma approaches pressure balance between jxB and ∇p, there are also 
curvature-driven m  =  0 instabilities as described by Kadomtsev [10]. An intriguing feature is 
that initially unstable pressure profiles self-organize by means of m = 0 interchange motions 
into stable pressure profiles in the following sense. When fluctuating plasma quantities are 
averaged along the z direction, the radial profiles of average current and average pressure 
settle into a one-dimensional equilibrium with finite fluctuations in time and space about 
equilibrium [1]. The averaged pressure profile becomes stable when examined with respect to 
the Kadomtsev m = 0 criterion for pressure gradient. The m = 0 stability criterion can be 
stated as Q0 < 1, where Q0 is defined (gas parameter γ = 5/3): 
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In simulations, the kinetic energy associated with instability and turbulent m = 0 motion 
grows exponentially at first, but then saturates as Kadomtsev stable profiles are obtained. The 
maximum level of turbulent kinetic energy is typically a few percent of the thermal energy. 



 
For example, Fig. 2 shows simulation 
results for pressure profiles at two 
times after plasma formation in an 
inverse pinch.  By t = 8 µs, the plasma 
has settled into a stable profile that 
closely matches the Kadomtsev Q0 = 1 
marginal state at large radius 
(indicated with heavy line). At smaller 
radius the value of Q0 is less than 1. FIG. 2. Simulated profiles of z-averaged pressure 

vs. radius at different times during formation in an 
inverse pinch. The heavy line is a Kadomtsev 
marginal profile with Q0 = 1. 
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Also according to Kadomtsev, the stability of m = 1 requires separately that Q1 < 1, where: 

dr
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p
rQ β−=1         (2) 

Comparison of Eqs. 1 and 2 shows that the m = 1 criterion is the one more stringent when β 
exceeds 2/5. Simulations suggest that β can be controlled during formation in an inverse 
pinch, and kept below 2/5 at all radial locations, by introducing a sufficient amount of initial 
bias magnetic field before plasma is formed. Typically the required bias current is about ¼ of 
the final level of applied current.  
 
3. Compressional heating  
 
The hard-core z pinch configuration suggests a 
liner compression approach in which the hard 
core remains stationary and the outer boundary 
implodes radially inward. A possible geometry 
is shown conceptually in Fig. 3. As the liner 
begins to implode, the region labeled “switch” 
in Fig. 3 causes the plasma injection gap to 
close. After that, plasma with flux is trapped in a 
toroidal chamber surrounding the hard core, and 
compressional heating occurs as the liner 
implodes. The liner shaping required for the 
switching action has not been examined in 
detail, but experience with shaped liners 
suggests that workable designs are possible 
[11]. 
 
 
Compressional heating of a sub-kilovolt target plasma appears to be an effective way to 
achieve thermonuclear temperatures. For a preheated target the required implosion velocity 
can be less than the sound speed of the plasma, in contrast to ICF where carefully timed 
shocks are required to reach thermonuclear temperatures.  
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FIG. 3. Liner and diffuse z pinch geometry for 
implosion heating. Apparatus for injection of 
plasma connects electrically at the top. A liner 
implosion circuit such as Atlas connects at the 
bottom.   



 
Heating is termed adiabatic if the implosion is slower than the magneto-sound velocity, but 
faster than heat transport or magnetic diffusion. The adiabatic limit, while not always 
applicable, is useful for understanding the physical process of heating, and often times for 
quasi-analytic approximations. However, even for the simple geometry of a diffuse z pinch, 
the analysis of adiabatic compression is somewhat complicated at high beta. The 
complications mostly arise because of the differences between effective γ = 2 for 
compression of magnetic field as opposed to γ = 5/3 for the plasma. Appendix A discusses 
analytically the adiabatic response of a diffuse z pinch during compression. 
 
Using numerical methods the response of any intial 
plasma profile can be studied. Fig. 4 shows the 
adiabatic heating response assuming the pressure 
profile starts initially as a uniform-temperature 
Kadomtsev-marginal profile (Q0 = 1 curve in Fig. 2) 
that extends from the hard core to the liner. Average 
temperature <T> is defined as total thermal energy U 
divided by 3N, where N is the (constant) number of 
ions in the chamber. Average beta <β> is defined as 
2U/3Emag, where Emag is the total magnetic field 
energy in the chamber. Fig. 4 shows that starting 
with A = 10 (like that shown in Fig. 3), <T> in the 
adiabatic approximation can be increased by 10x (or 
100x) as the aspect ratio is reduced to 1.4 (or 1.02). 
Average beta increases from 0.10 at first, reaches a 
maximum of 0.16 at A = 1.6, and then decreases. 
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FIG. 4. Adiabatic compression 
increases temperature and magnetic 
field energy as aspect ratio decreases.   

 
An important issue for compressional heating is what happens to stability during the process. 
To analyze m = 0 stability it is helpful to introduce a Kadomtsev parameter, BrpK /5/3= , 
where the exponent of p is the reciprocal of the gas parameter. Given equ  

constraint, the condition 

ilibrium as a

0∂Κ
>  is then equivalent to Q  < 1. For the case of adiabatic 

compression, the pressure profile evolves in a way that conserves mass, flux and entropy. 
Therefore, an ideal plasma with no resistivity or heat losses conserves /r B

r∂ 0

ρ  and p/ρ5/3 in 
each fluid element, and also the value of K. This means that if plasma elem do not change 
their relative radial positions, then for ideal isentropic motions they will stay in the same 
condition relative to m  = 0 stability (stable, unstable, or marginal). In particular, if a plasma 
begins in the marginally stable state with Q

ents 

0 = 1 or equivalently K independent of r, then the 
value of Q0  stays constant during compression.   
 
Many aspects of the changing plasma β  during compression, and the resulting influence on 
both m = 1 as well as m = 0 stability, can be understood by examining both numerical results 
and the analytic discussion of Appendix A. Qualitatively, one finds that the initial plasma 
equilibrium is distorted in a quite non-linear manner during compression. The value of β 
always decreases near the hard core during compression (r/a~1), but it usually increases in 
regions of large r/a. There is a region where β remains nearly constant during large aspect 
ratio compression. Then as A approaches unity, β decreases at all radial locations. 



 
The profile evolution obtained 
numerically is shown in Fig. 5 for the 
same Kadomtsev-stable profile of Q0 
= 1 used for Fig. 4. The initial 
maximum β at the inner wall is 
assumed to be 2/5, so at that location 
Q1 is unity. At larger radii, β is 
smaller, so the value of Q1 is smaller.  
Fig. 5 shows the values of Q0 and Q1 
after compression as determined by 
taking numerical derivatives defined 
by Eqs. 1 and 2. For initial stages of 
compression with A larger than 2, the 
numerical value of Q0 is very nearly 
constant, which is the expected 
result. The value of Q0, is still close 
to unity for A = 1.2 as seen in Fig. 5, 
although a slight decrease of Q0  
appears as r/a approaches unity, and oscillations are seen as r/a approaches A. These 
departures from unity are numerical effect that arise because of the errors that occur when 
taking a numerical derivative. The numerical values of Q1 become approximately uniform in 
radius and well below unity (away from the edge regions where numerical errors appear), 
which shows that the margin for stability to m = 1 is increased.  
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To summarize, the previously described self-organization tends to generate Q0 < 1. Adiabatic 
compression does not change Q0, and reduces Q1. Thus, from a stability perspective, 
compression of a diffuse z pinch appears to be a promising approach for heating. 
 
4. Liner behavior during implosion. 
 
For MTF, the relevant parameters for 
liner implosions are typically MA of 
current and MJ of energy. The Atlas 
facility, which is located at the DOE 
Nevada Test Site, is a good example of 
such a facility. Typical Atlas parameters 
are listed in Table 1. It was designed primarily for the purpose of imploding cylindrical liners 
to generate high pressures for studies of dynamic material properties, but the facility offers 
interesting potential as an MTF driver. The typical liner dimensions used in Atlas are similar 
to the sketch shown in Fig. 3. 

         TABLE 1.  ATLAS PARAMETERS 
Voltage 240 kV 
Stored energy 24 MJ 
Source inductance  ~ 25 nH 
Peak current  30 MA 

FIG. 5. Plasma pressure, temperature, beta, and Q 
profiles after adiabatic compression from A = 10 to 
A = 1.2.  

 



A reasonable approximation for liner 
behavior during the early stages of 
implosion is to assume the liner material is 
an incompressible fluid. The motion can 
then be calculated using a zero-
dimensional approximation [12]. At peak 
compression, Mbar pressures are 
generated. Then the liner and hard-core 
compressibility becomes important, and 
one source of inefficiency is the energy 
that goes into material compression. 
Another important effect is the eddy 
current heating of the liner and hard core 
surfaces. These effects can be quantified 
using a Los Alamos one-dimensional 
MHD code called RAVEN. The 
Lagrangian code uses material properties 
such as equation of state and resistivity 
obtained from the Los Alamos tabulated Sesame tables. Fig. 6 shows the expected behavior 
of a 10-cm long, 2-mm-thick aluminum liner driven by Atlas using the geometry of Fig. 3. 
The initial hard-core current is assumed to be 1.5 MA, and the space between the liner and 
the hard core is assumed to be a vacuum. The inner surface reaches a velocity of 3.3 km/s, 
and the liner KE reaches 650 KJ before deceleration begins. The implosion time is about 23 
µs. The finite compressibility of aluminum can be seen by the displacement of the hard core 
surface at the time near peak compression. 
The magnetic field in the gap reaches a 
value of about 500 Tesla. The energy lost 
to compression effects is about 380 KJ or 
42% of the kinetic energy.  
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FIG. 6.  Liner inner and outer radius, hard-core 
radius, and Atlas current vs. time assuming zero 
liner resistivity. Dotted line is inner liner radius 
with Sesame resistivity.  
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Eddy current heating during implosion 
causes the aluminum hard-core surface to 
boil just before the time of peak 
compression for the case presented in Fig. 
6. Fig. 7 shows the temperature in eV near 
the hard-core surface for times near peak 
compression in the implosion. The liner 
inner surface boils slightly later in time 
because the larger radius has lower current 
density.  

FIG. 7.  Temperature (eV) vs. radius near 
surface of hard core at times near peak 
compression.

 
Because the space between the liner and the hard core is modeled as vacuum, flux diffuses at 
a rate determined by aluminum surface temperature and resistivity. The situation with a 
conducting plasma in the gap is different because the amount of flux that diffuses becomes 
limited by the plasma conductivity. The modeling reported here does not quantify this effect, 
but for reference, liner motion is computed either with perfect conductivity or realistic 
conductivity shown as a solid line or a dotted line respectively in Fig. 6. For the case with 
aluminum resistivity and vacuum conditions, the liner inner surface impacts directly upon the 
hard-core surface as seen by the dotted line. 
 



5. Simulations of liner compression including plasma energy losses 
 
It would be difficult in practice to implode as fast as required for strict application of the 
adiabatic approximation. Stable equilibrium of a hard-core diffuse z pinch requires plasma 
contact with metallic boundaries in both radial and axial directions. Thus heat losses and 
some degree of non-adiabatic behavior are expected. Taking into account thermal conduction 
and the Hall effect can destroy the Kadomtsev stable profiles and result in high convection 
fluxes. The convective effect near external metallic boundaries was analyzed and reported 
elsewhere [13]. Radiation losses are also expected to be important for plasma near the 
boundaries as wall impurities are swept into the chamber by plasma convection [14]. Efforts 
continue to be directed towards estimating and understanding these effects with increasingly 
realistic numerical simulations.  
 
Results are presented here for Atlas-like 
parameters using the same two-dimensional 
MHD code previously used to explore self-
organization. The compressible two-fluid model 
uses Braginskii coefficients of thermal 
conduction and electrical resistivity [7]. The 
assumed Ohm’s law is E+vxB = ηj, which 
relates electric field E, fluid velocity v, magnetic 
field B, current j, and resistivity η. Thus the 
effects of compressional heating and cross-field 
thermal losses at cold boundaries enhanced by 
convective motion are included. Hall terms and 
thermoelectric terms such as the Nernst current 
are not included. 
 
Simulation results are shown in Fig. 8. The 
numerical model uses as input a prescribed 
motion for the outer plasma boundary and 
assumes the inner boundary does not move. The 
outer boundary position is taken from the 
RAVEN calculations by assuming the gap 
between the inner liner surface and the hard core 
is the same as determined by RAVEN assuming 
zero resistivity (solid line in Fig. 6).  
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FIG. 8.  Numerical simulation of 
plasma parameters during liner 
compression assuming prescribed 
boundary motion based on Atlas 
parameters.   

 
The injection process is not modeled in the simulation reported here. The target plasma is 
assumed to have 30 KJ of energy generated with a 1.5 MA pulse of current before the liner 
implosion begins, which are reasonable parameters expected from coaxial accelerators. The 
temperature is assumed to be uniform at 500 eV, and the initial pressure profile is assumed to 
be a Kadomtsev-stable profile with Q0=1 and <β> = 0.1 extending from the hard core to the 
liner as discussed above. The corresponding average ion density is 4 x1022 m-3.  
 
Fig. 8 shows the time dependent average temperature reaching 6 keV and average density of 
about 6x1024 m-3 at the time of peak compression. According to these results, a deuterium 
plasma would generate 4x1012 neutrons. Time-resolved neutrons should be detectable starting 
at about 20 µs based on previous experience with scintillator detectors. For comparison, a 



strictly adiabatic calculation would give maximum average temperature of about 7 keV and 
3x1013 neutrons. Note that the graph for liner velocity indicates that liner deceleration and 
Rayleigh-Taylor instabilities would not be expected until about 22 µs, well after neutron 
emission should begin. Thus, the time variation of neutron emission would give valuable 
information about the final stages of plasma compression.  
 
6. Conclusions  
 
The prospects for an interesting MTF liner implosion experiment have been examined based 
on the existing Atlas facility. Experience with MAGO and other types of coaxial accelerators 
give hope that a moderate-cost plasma injector with the needed properties could be 
developed. The stabilized hard-core z pinch appears to have interesting properties for MTF, 
and the geometry is well suited to the Atlas hardware.  
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Appendix A.    Adiabatic compression of a diffuse z pinch. 
 
1. Introduction. We analyze here 
adiabatic compression of a diffuse z 
pinch by a radially imploding external 
shell (or liner) as indicated in Fig. A1. 
We assume the diffuse z pinch plasma 
has been established with a stable 
equilibrium as discussed in the text. 
We have in mind the stabilized hard-
core situation, but much of the 
analysis applies as well to a diffuse z 
pinch without a hard core. Adiabatic 
refers to a slow implosion in the sense 
that the liner velocity is much smaller 
than the magneto-sound velocity, but 
fast in the sense that heat transport and 
magnetic diffusion are negligible. The 
magneto-sound velocity is equal to the sound speed at high betas, and to the Alfven speed at 
low betas. Both the central rod and the external shell are assumed to be perfect conductors. 
One of the interesting results of this analysis will be that plasma beta can increase or decrease 
during the implosion depending upon the amount of compression and which region of the 
plasma is under consideration. 

Fig. A1. A hard-core pinch configuration 
during the implosion of a conducting shell: 
(a)Initial state; the radius of the outer shell is 
b0. (b) The state reached after the shell radius 
becomes b<b0. We assume that the radius of 
the central rod does not change. 

 
2. Basic equations. The slowness of the compression process allows us to consider the 
plasma evolution as a set of equilibria determined by the instantaneous value of the shell 
radius b. The magnetic field has only an azimuthal component, and the current has only an 
axial component in the diffuse z pinch. Therefore, at any instant of time the pressure profile 
and magnetic field as functions of radius are solutions to: 
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The Lagrangian description of this problem is useful. In the initial state, the plasma pressure, 
density, and magnetic field, are functions of the radius r0 given by p0(r0); ρ0(r0); and B0(r0). 
In the state where the external shell radius has become b, a flux surface whose initial radius 
was r0  moves to some radius r: 

),( 0 brrr =        (A2) 
The value of b enters this equation as a parameter. Obviously, the function r(r0,b) satisfies the 
following relations: 
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As a consequence of mass and flux conservation we have: 
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Pressure follows the adiabatic relation: 
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Switching from differentiation over r to differentiation over r0 in Eq. A1, we find the 
following equation which, together with the boundary conditions of Eq. A3 determines the 
function r(r0,b) for any given b: 
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After the function r(r0,b) is found, one then computes the pressure and the magnetic field in 
the new state by using Eqs. A5 and A6. The plasma beta in the new state is given as: 
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Eq. A7 is a complex non-linear equation, which in general can be solved only numerically. 
We discuss here two limiting cases where a simple analytic solution is possible, the cases of 
high betas or low betas.  
 
3. High-beta plasma (wall confinement). In the case of high-beta which can occur with wall 
confinement, the second term in Eq. A7 can be neglected. This amounts to a zero-order 
approximation in the parameter 1/β; higher-order corrections can also be derived easily. The 
initial plasma pressure in zero order is then just uniform pressure p0(r0)=constant. Eq. A7 
gives: 
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The integration constants C1 and C2 can be found from the boundary conditions in Eqs. A3, 
which gives the result: 
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The plasma beta is determined by substituting Eq. A11 into Eq. A8: 
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Here the numerical value of γ is used for a fully ionized plasma (γ=5/3).  
 
For the diffuse pinch with a=0, we have: 
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so, one concludes that beta everywhere increases during adiabatic compression in a diffuse 
high-beta z pinch as noted previously in Ref. 3.  
 
For the hard-core z pinch the situation is more complex. The beta can increase or decrease 
depending upon the position r0 and on the aspect ratio A=b/a. We also use the notation A0 = 
b0/a. Near the central rod, beta universally decreases. We see that by putting r0 = a, and 
finding from Eq. A12 that: 
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This happens because the compression occurs in an almost planar fashion next to the hard 
core. On the other hand, for a large-enough A, compression in the outer parts of the pinch 
occurs essentially in the same way as in a diffuse pinch, and beta increases. To see that we 
examine Eq. A12 for r0 = b, and find: 
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From Eq. A12 one can show that for b0/a > (3/2)1/2, the beta at the plasma periphery increases 
with decreasing b, until b/a becomes equal to (3/2)1/2. After that it decreases and eventually 
reaches the initial value at the aspect ratio determined by the equation: 
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With further compression beta becomes smaller than its initial value at all radii.  
 
If the condition A0 > (3/2)1/2 holds, and A is greater than the value determined by Eq. A16, 
there exists an inversion radius r0* that separates the outer region where β /β0 increases 
during compression (r0 > r0*) and an inner region where β /β0 decreases (r0 < r0*). The 
dependence of r0* vs. A for A0 = 3 is shown in Fig. A2.  

 
Fig. A2. The inversion radius for high-beta plasma, 
outside of which β grows larger than its initial 
value during compression to aspect ratio A = b/a, 
and inside of which β grows smaller. For this 
example, the initial value b0/a is taken as aspect 
ratio A0 = 3. 

  
We see in Fig. 2A that as the liner approaches the hard core radius, or 
equivalently, as A approaches unity, r0*/a approaches A0  This means that plasma 
at all initial locations has reduced beta after compression. Conversely, for 



moderate compression to say A = 2, plasma located initially with r0 greater than 
about 1.4 a has increasing beta.  
 
For the high-beta compression under consideration, Fig. A3 shows the ratio of the 
final beta to initial beta vs. the initial plasma location r0 for various values of 
aspect ratio A, assuming A0 = 3.  
 

Fig. A3. Final beta relative to initial beta for high-beta plasma as a 
function of initial plasma location. Numerical example is presented 
assuming initial aspect ratio is A0 = 3, the same as in Fig. A2. 

 
The tendency by which more and more plasma has reduced beta as compression increases, 
which was mentioned above in connection with Fig. A2, can also be seen in Fig. A3. The 
location of r0/a where β /β0 equals unity increases monotonically as A increases. 
 
4. Low-beta plasma. In the configuration being considered, the low-beta case is possible 
only in the presence of a central post. Without the central post, the local value of beta 
becomes infinite at the axis where B must be zero by symmetry. For a low-beta solution, the 
plasma currents must be small compared to the current in the central post. In this case, one 
can neglect the first term in Eq. A6. Also, B0 in this case is proportional to 1/r0. We then can 
say: 
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where D is an arbitrary constant. Accordingly, using the first of the boundary conditions Eq. 
A3, one finds: 
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Applying the second of the boundary conditions A3, one obtains: 
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Substituting this result into Eq. A8, one gets: 
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Because r < ro, and b < b0, the beta in this case universally decreases. 
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